
Chapter 8

Variational Principle

8.1 General Idea:
Consider a physical system described by a Hamiltonian Ĥ. Let’s write H in terms of its eigen-
decomposition H = ∑iEi∣ϕi⟩⟨ϕi∣ where we suppose that the energy levels are labelled in increas-
ing order with Ei ≤ Ei+1 with E0 the ground state energy. It follows that for any state ∣ψ⟩, the
average energy of that state ⟨ψ∣H ∣ψ⟩, will always be greater than or equal to the ground state
energy E0. This rather obvious1 statement is given the name of the variational principle:

⟨ψ∣H ∣ψ⟩ ≥ E0.

This inequality becomes an quality (again obviously) if and only if ∣ψ⟩ = ∣ϕ0⟩, and ϕ0 is non-
degenerate. I think this statement hardly needs proving but in case its helpful here is that proof
in the discrete case (and the continuous case easily follows by using properties of the integral):

⟨ψ∣Ĥ ∣ψ⟩ =
∞

∑
n=0

En ∣⟨ψ∣ϕn⟩∣2

≥ E0
∞

∑
n=0
∣⟨ψ∣ϕn⟩∣2

= E0
∞

∑
n=0
⟨ψ∣ϕn⟩⟨ϕn∣ψ⟩

= E0

Note that I have provided the statement above assuming, as is standard, that the state ∣ψ⟩ is
normalised. However, the variational principle is often stated more generally for the case of a
(potentially) non-normalized state. In this case you first need to normalize by hand such that
∣ψ⟩ becomes 1√

⟨ψ∣ψ⟩
∣ψ⟩ and so the variational principle becomes:

⟨ψ∣H ∣ψ⟩
⟨ψ∣ψ⟩ ≥ E0 . (8.1)

We can use the variational principle to find an approximation of the ground state of H. The
idea is to come up with a parameterised guess for the state ∣ψ⟩, and then we use the variational

1I generally try and avoid calling things ‘trivial’ or ‘obvious’ but I really do think this statement is. And
recognising so is actually helpful. Of course the lowest energy a state can have is the ground state energy! As
a result I’ve always found naming this claim as the ‘variational principle’ at best a bit grandiose and at worst
slightly confusing.
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Figure 8.1:

principle to find the parameter values that minimize ψ. This method generalizes to excited
states. For any ∣ψ⟩ ∈ H such that ⟨ϕ0∣ψ⟩ = 0, the following inequality2 is always satisfied:

⟨ψ∣Ĥ ∣ψ⟩
⟨ψ∣ψ⟩ ≥ E1.

The proof of this fact is identical to the proof of the variational principle for the ground state
since the term involving ∣ϕ0⟩ drops out by the choice of ∣ψ⟩.

Ok, so the basic idea of the variational principle is pretty simple (I promise!). Let’s now look
at how it is applied in practise. Again, I hope you’ll agree that the basic idea of how to apply
it is straightforward enough. That said, as we’ll see, actually doing the full calculation can lead
to some annoying integrals.

Example 8.1.1 (One-Dimensional Harmonic Oscillator). The system’s Hamiltonian is given by:

Ĥ = − h̵
2

2m
d2

dx2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=T̂

+ 1
2
mω2x2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=V̂

. (8.2)

We introduce a (non-normalized) trial function:

ψa(x) =
1

x2 + a (8.3)

with a > 0. Note that this choice is physically unrealistic because the wavefunction should
decrease exponentially as x goes to infinity. Our goal is to compute the energy of H in the state

2We’re assuming here that the ground state is non-degenerate. If it’s degenerate you need the constraint that
∣ψ⟩ has zero overlap onto the space spanned by the ground states.
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∣ψ⟩ and then find the a that minimizes this energy. To do so, we need to compute:

⟨ψ∣T̂ ∣ψ⟩ = − h̵
2

2m

∞

∫
−∞

dx
1

x2 + a
d2

dx2
1

x2 + a

⟨ψ∣V̂ ∣ψ⟩ = 1
2
mω2

∞

∫
−∞

dx
x2

(x2 + a)2

⟨ψ∣ψ⟩ =
∞

∫
−∞

dx
1

(x2 + a)2 .

(8.4)

This will allow us to compute the average energy of our guess as a function of x as

E(x) ∶= ⟨ψ∣Ĥ ∣ψ⟩⟨ψ∣ψ⟩ =
⟨ψ∣T̂ ∣ψ⟩
⟨ψ∣ψ⟩ +

⟨ψ∣V̂ ∣ψ⟩
⟨ψ∣ψ⟩ . (8.5)

And then all we need to do is find the minimum of the function E(x), and this will be our guess
of the ground state energy.

Computing the integrals is the hard part. I’ll leave that fun to you and just state the results
here 3.

⟨ψ∣ψ⟩ = ∫
∞

−∞

1
(x2 + a)2dx =

π

2a3/2 (8.6)

⟨ψ∣Ĥ ∣ψ⟩ = ∫
∞

−∞

1
x2 + a (−

h̵2

2m
d2

dx2 +
1
2
mω2x2) 1

x2 + adx

= − h̵
2

2m ∫
∞

−∞

6x2 − 2a
(x2 + a)4dx +

1
2
mω2∫

∞

−∞

x2

(x2 + a)2dx

= π

2a3/2 (
h̵2

4ma
+ 1

2
mω2a) .

(8.7)

The energy corresponding to a state ∣ψa⟩ is therefore given by

E(a) = ⟨ψa∣Ĥ ∣ψa⟩⟨ψa∣ψa⟩
= h̵2

4m
1
a
+ 1

2
mω2a,

and we seek a such that the energy is minimal:

dE(a)
da

= − h̵2

4ma2 +
1
2
mω2 = 0 Ô⇒ 1

2
mω2a2 = h̵2

4m
Ô⇒ a = h̵

mω
√

2
.

Our approximation of the energy of the ground state is therefore given by

E ( h̵

mω
√

2
) = h̵ω√

2
≃ 0.72h̵ω (8.8)

This approximation is considerably higher than the exact (known in the case of the harmonic
oscillator) ground state energy: 0.72h̵ω > 0.5h̵ω.

3Don’t worry, in the exam I’ll give you enough hints for you to be able to figure it out without being an
integration wizard. If you want some hints for this one, go check out Vincenzo’s notes.
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Example 8.1.2 (One-Dimensional Harmonic Oscillator:). We could now similarly determine the
first excited state of the one-dimensional harmonic oscillator. The Hamiltonian is still given by
Eq. 8.2. Let’s set 4 ψa(x)) x

(x2+a)2 with a > 0. This function is odd under the inversion x → −x.
Therefore, it will be orthogonal to the ground state ψ0(x), which is even.

For the computation, we will need the following integrals:

I4 =
∞

∫
−∞

dx
1

(x2 + a)4 =
5π
16
a−7/2 I5 =

35π
128

a−9/2

J4 =
∞

∫
−∞

x2

(x2 + a)4 =
π

16
a−5/2 I6 =

63π
256

a−11/2

k4 =
∞

∫
−∞

dx
x4

(x2 + a)4 =
π

16
a−3/2

It follows that we can compute the kinetic energy term as:

⟨ϕa∣T̂ ∣ϕa⟩ = −
h̵2

2m

∞

∫
−∞

dx
x2

(x2 + a)2
d2

dx2
x2

(x2 + a)2 = ⋯

= h̵2

2m

∞

∫
−∞

dx( d
dx

x

(x2 + a)2)
2

= h̵2

2m

∞

∫
−∞

dx(− 1
(x2 + a)2 −

4x2

(x2 + a)3)
2

= h̵2

2m

∞

∫
−∞

dx(− 3
(x2 + a)2 +

4a
(x2 + a)3)

2

= h̵2

2m
(9I4 − 24aI5 + 16a2I6)

= h̵2

2m
(45π

16
− 105π

16
+ 63π

16
)a−7/2

= 3
16
π
h̵2

2m
a−7/2

And the potential energy term is given by:

⟨ϕa∣V̂ ∣ϕa⟩ =
1
2
mω2

∞

∫
−∞

dx
x4

(x2 + a)4

= 1
2
mω2k4

= π

32
mω2a−3/2

Finally, the norm is given by:

⟨ϕa∣ϕa⟩ =
∞

∫
−∞

dx
x2

(x2 + a)2 = J4 =
π

16
a−5/2

4Note we chose to divide by (x2 +a)2 rather than (x2 +a2). This is because if we picked x/(x2 +a2) then even
those the function is square-integrable the potential term would eventually diverge.
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Thus putting this mess together we have

E(a) = 1
2
(3h̵2

m
a−7/2 +mω2a−3/2) ⋅ (a−5/2)

−1
= 3 h̵

2

2m
1
a
+ 1

2
mω2a (8.9)

To find our approximation of the energy of the first excited state we just minimize this:

dE(a)
da

= −3 h̵
2

2m
1
a2 +

1
2
mω2

dE(a)
da

=⇒ 3h̵2

2m
1
a2 =

1
2
mω2

⇒ a2 = 3h̵2

m2ω2

a = =
√

3 h̵

mω

E1(a) =
3h̵2

2m
mω

h̵
√

3
+
√

3
2
h̵ω

(8.10)

Thus we approximate the energy of the first excited state as:

E1(a) =
√

3h̵ω ≃ 1.732h̵ω,

which is larger than, but not too far off, the known of the energy of the first excited state of the
oscillator of Eeff

1 = 1.5h̵ω.

More generally, if one cannot use a symmetry argument, one can always seek a state ∣ϕ⟩ that
minimizes the energy expectation value, E = ⟨ϕ∣Ĥ ∣ϕ⟩ /⟨ϕ∣ϕ⟩ with the constraint ⟨ϕ∣ψ⟩ = 0, where
∣ψ⟩ is the variational solution found for the ground state. If ∣ψ⟩ is a good approximation, then
its component orthogonal to ∣0⟩ will be minimal. In this case, there is a high probability that
the variational solution ∣ϕ⟩ will be almost orthogonal to ∣0⟩ and will also provide a relatively
good approximation to ∣1⟩.

Note 8.1.3. Note that the variational approach makes error calculations extremely complicated
(we can’t do it unless we have a better approximation - but then we would just use that in the
first place!) Furthermore, for any arbitrary wave function ψ, minimizing the error actually leads
to restoring the Schrödinger equation.
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8.2 The variational Principle for an arbitrary ansatz
These final two sections are non-examinable. I include them in case you are interested.

We can try to find the exact solution to the problem using the variational approach. Consider
a Hamiltonian Ĥ and an arbitrary state ψ(x). The energy expectation value is given by

E[ψ,ψ∗] = ⟨ψ∣Ĥ ∣ψ⟩ = ∫ dxψ∗Ĥψ

Since ψ is a complex-valued function, we consider E to be a function of ψ and ψ∗ (i.e., of R(ψ)
and I(ψ)).

Introduce an infinitesimal variation δψ∗(x) of ψ∗(x), with δψ∗(x) → 0. We are treating ψ and
ψ∗ as two independent variables, and thus

E[ψ,ψ∗ + δψ∗] = ∫ dxψ∗Ĥψ + ∫ dxδψ∗Ĥψ

and

δE = E[ψ,ψ∗ + δψ∗] −E[ψ,ψ∗] = ∫ dxδψ∗Ĥψ

It is necessary to introduce the concept of a functional derivative at this point. Alternatively,
we can imagine a function ψ "discretized" on a grid xj , j = −∞,⋯,1,2,⋯. In this case, we can
interpret this problem in a variational context with an infinite number of parameters δψ∗j =
δ∗(xj). This way, we recover the concept of a traditional derivative.

To minimize E, we need δE = 0. Now,

δE = ∫ dxδψ∗Ĥψ

In the discretized version,

δE = ∑
j

δψ∗j Ĥψj

and the (true) derivative of E with respect to ψ∗j is

∂E

∂ψ∗j
= Ĥψj

The minimization condition is then
∂E

∂ψ∗j
= ∀j ⇒ Ĥψj = 0 ∀j ⇒ ψj = 0

and similarly for ψ∗j .

This strange result is because we forgot the norm constraint. We need ⟨ψ∣ψ⟩ = 1. And if we do
not have this, we can ways just set ψj = 0 to set the energy to 0.

To find a constrained minimum, we use the Lagrange multipliers. We want to minimize ⟨ψ∣Ĥ ∣ψ⟩
with the constraint ⟨ψ∣ψ⟩ = 1. We introduce the functional

E[ψ,ψ∗, λ] = ⟨ψ∣H ∣ψ⟩ − λ(⟨ψ∣ψ⟩ − 1) = ∫ dxψ∗Ĥψ − λ(∫ dxψ∗ψ − 1)
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As before:

δE = ∫ dxδψ∗Ĥψ − λ∫ dxδψ∗ψ

The condition δE = 0 for arbitrary variation δψ∗(x) implies equality of the integrands:

Ĥψ = λψ

It’s the Schrödinger equatioN! The variational principle, without additional conditions, should
lead to the exact solution of the problem (but hasn’t made the problem any easier).

Reminder 8.2.1. (Harmonic Oscillator5). We have

Ĥ = p̂2

2m
+ 1

2
mω2x̂2

with [x̂, p̂] = ih̵. Let’s introduce

â ≡
√
mω

2h̵
x̂ + i 1√

2mh̵ω
p̂

â† ≡
√
mω

2h̵
x̂ − i 1√

2mh̵ω
p̂

x̂ =
√

h̵

2mω
(â† + â)

p̂ = i
√

mh̵ω

2
(â† − â)

We note
[â, â†] = ââ† − â†â = 1

There is a ground state ∣ϕ0⟩ such that
â ∣ϕ0⟩ = 0

The spectrum is
Ĥ ∣ϕn⟩ = h̵ω (n +

1
2
) ∣ϕn⟩

The norms are

â† ∣ϕn⟩ =
√
n + 1 ∣ϕn+1⟩

â ∣ϕn⟩ =
√
n ∣ϕn−1⟩

∣ϕn⟩ =
(â†)n√
N !
∣ϕ0⟩

The {∣ϕn⟩} are non-degenerate, we thus have ⟨ϕi∣ϕj⟩ = δij .

Note 8.2.2.
⟨ϕn∣x̂∣ϕn⟩ = ⟨ϕn∣ρ̂∣ϕn⟩ = 0

5Vincenzo Savona’s notes, which I am working from here, have a couple of pages recapping the quantum
harmonic osccilator at this point. It’s not entirely clear to me why. So I will skip in the lecture. But Physicists
love modelling things as a harmonic osccilator so it is good to have this stuff dialled so I’ll this here in the notes
in case it is helpful for anyone.
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and

⟨ϕn∣x̂2∣ϕn⟩ = ⋯ =
h̵

2mω
(2n + 1)

⟨ϕn∣p̂2∣ϕn⟩ = ⋯ =
mh̵ω

2
(2n + 1)

for n = 0 we have ∆x̂∆p̂ = h̵
2

For a Harmonic oscillator in isotropic 3D, we have

Ĥ = ∣p̂∣
2

2m
+ 1

2
mω2 ∣̂r∣2

Note 8.2.3.

∣p̂∣2 = p̂2
x + p̂2

y + p̂2
z

∣x̂∣2 = x̂2 + ŷ2 + ẑ2

thus

Ĥ = Ĥx + Ĥy + Ĥz

Ĥ = p̂2
x

2m
+ 1

2
mω2x̂2

Ĥ =
p̂2
y

2m
+ 1

2
mω2ŷ2

Ĥ = p̂2
z

2m
+ 1

2
mω2ẑ2

Separable hamiltonian:
ψ(x, y, z) = ψn(x)ϕm(y)ξl(z)

where Ĥxψn(x) = Enψ(x), with En = h̵ω (n +
1
2
), similarly for ŷ and ẑ. Thus Ĥψ = Enmlψ, with

Enml = h̵ω (n +m + l +
3
2
) Why is the harmonic oscillator so important?

1. Except for pathological cases, all systems admit a harmonic approximation.

Example 8.2.4. Central Potential. We have

V = − h̵
2

2µ
∂2

∂r2 +
L2

2mr2 −
α

r

One could start from the solution of the harmonic problem and calculate more accurate
solutions using perturbation theory.

2. Quantum Field Theory for Multi-Body Systems. The state of a free particle with momen-
tum h̵k corresponding to one quantum of energy can be written as ∣1⟩. Thus, two particles
in the same state will have twice the energy, which can be understood as the state ∣2⟩
of the harmonic oscillator, and so on. The states of N free particles are described as an
infinite set of harmonic oscillators, one for each h̵k.
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More formally, this result can be obtained from the consideration that the wave function
ψ(r) can be treated as a dynamic variable, and thus as an additional operator, denoted
by ψ̂ and ψ̂†. This procedure is called second quantization.

90



CHAPTER 8. VARIATIONAL PRINCIPLE Quantum Physics II

8.3 Hartree-Fock Theory
Let’s consider a system of N spinless Fermions. If you’ve forgotten the lecture of indistinguish-
able particles now might be a good moment to go back and revise it. But just to recap the
basics, the state of such a system is anti-symmetric under exchange of any two particle indices.
Thus we can write the general state as:

∣ψx⟩ =
1√
N !
∑
P∈Sn

sign(P)P∣x1, x2, . . . , , xN ⟩ (8.11)

where sign(P) = −1 if P involves an odd number of index swaps and sign(P) = 1 if P involves an
even number of index swaps. We note that given the Pauli exclusion principle, no two Fermions
can be in the same state (i.e. nk = 1 for all k), so each state in the sum here is unique and so
the normalization is simply 1√

N ! .

Now, it’ll be convenient here to switch notation and write this in terms of the wavefunctions
explicitly. That is, we will work within the Hilbert space H1 of single-particle states, where
the set {ϕni}Ni=1 represents an orthonormal basis of single-particle wave functions. Under these
considerations, any wave function for N particles ψ can be expressed as:

ψ(x1,⋯, xN) =
1√
N !
∑
P∈Sn

sign(P)Pϕn1(x1) ⋯ϕnN
(xN) (8.12)

Or, equivalently, we can recognise this expression as a determinant and can write:

ψ(x1,⋯, xN) =
1
N !

RRRRRRRRRRRRRR

ϕn1(x1) ⋯ ϕnN
(xN)

⋮ ⋮
ϕnN
(x1) ⋯ ϕnN

(xN)

RRRRRRRRRRRRRR
. (8.13)

We can now use our new found appreciation for the variational principle and can consider
the ϕni as variational parameters. The Hartree-Fock approximation involves representing the
ground state as a single Slater determinant, so we need to choose the ϕni that provide the best
approximation.

The Hamiltonian of the system is given by Ĥ = T̂ + V̂ , where

• The operator T̂ is the total kinetic energy of the system, which is the sum of the kinetic
energies of the N particles:

T̂ =
N

∑
j=1

t̂j =
N

∑
j=1
− h̵

2m
∇2
j

• The operator V̂ represents the potential energy of the N particles, given as the sum of
potential energies of each pair of particles:

V̂ = ∑
i,j
i≠j

V̂i,j ,

where V̂i,j = V̂ (xi, xj).

We work within the Fock space. We have:

⟨ψ∣T̂ ∣ψ⟩ =
N

∑
j=1
⟨ϕnj ∣T̂ ∣ϕnj ⟩ =

N

∑
j=1
∫ dxϕ∗nj

(x)T (x)ϕnj(x), (8.14)
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and

⟨ψ∣V̂ ∣ψ⟩ = 1
2

N

∑
i,j=1
(⟨ϕniϕnj ∣V̂ ∣ϕniϕnj ⟩ − ⟨ϕniϕnj ∣V̂ ∣ϕnjϕni⟩) (8.15)

= 1
2

N

∑
i,j=1
∫ dx1dx2(ϕ∗ni

(x1)ϕ∗nj
(x2)V̂ (x1, x2)ϕni(x1)ϕnj(x2) (8.16)

− ϕ∗nj
(x1)ϕ∗ni

(x2)V̂ (x1, x2)ϕni(x1)ϕnj(x2)). (8.17)

You should recognise this type of expression from when we studied indistinguishable particles
- first term in the expression for ⟨ψ∣V̂ ∣ψ⟩ is called the "direct term," while the second is the
"exchange term."

The goal is to minimize ⟨ψ∣Ĥ ∣ψ⟩ = ⟨ψ∣T̂ ∣ψ⟩ + ⟨ψ∣V̂ ∣ψ⟩ subject to the N2 constraints: ⟨ϕni ∣ϕnj ⟩ =
δi,j . We use Lagrange multipliers to solve the constrained minimization problem.

Theorem 8.3.1 (Constrained Extrema via Lagrange multipliers). Seeking the extrema of a
function F (x, y) under a constraint f(x, y) = 0 is equivalent to searching for those of the function:

H(x, y, λ) = F (x, y) − λf(x, y).

Thus we are tasked with minimizing:

F = ⟨ψ∣Ĥ ∣ψ⟩ −∑
i,j

λi,j (⟨ϕni ∣ϕnj ⟩ − δij) . (8.18)

We have N2 constraints of the form ⟨ϕni ∣ϕnj ⟩ = δi,j so initially it might seem that we need
to introduce N2 Lagrange multipliers. However, with a little thought we can see that the
constraints with respect to swapping i and j and so it follows that λi,j = λ∗i,j which halves the
number of constraints we need to deal with.

We consider ϕ and ϕ∗ as independent variables. As an example, the variations with respect to
ϕ∗ni

yield:

δT̂ = ∑
j
∫ dxδϕ∗nj

(x)t̂ϕnj(x).

Similarly, the variations in V̂ are:

δV̂ = ∑
j≠i
∫ dx1∫ dx2(δϕ∗ni

(x1)ϕ∗nj
(x2)V̂ ϕni(x1)ϕnj(x2) − δϕ∗ni

(x2)ϕ∗nj
(x1)V̂ ϕni(x1)ϕnj(x2)).

And the variations in the constraint term give:

δ∑
i,j

λi,j (⟨ϕni ∣ϕnj ⟩ − 1) = ∑
i,j

λi,j ∫ dxδϕ∗i (x)ϕj(x).

We want to minimize F = ⟨ψ∣Ĥ ∣ψ⟩ −∑i,j λi,j (⟨ϕni ∣ϕnj ⟩ − δij) with respect to ϕni . We, therefore,
impose δF

δϕ∗ni

= 0 for all i, which leads to the equation:

t̂ϕni(x) +
N

∑
j=1
∫ dx2(ϕ∗nj

(x2)V̂ ϕni(x)ϕnj(x2) − ϕ∗nj
(x)V̂ ϕni(x)ϕnj(x2)) =

N

∑
j=1

λi,jϕnj(x). (8.19)
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Without loss of generality we can chose to work in the basis in which the matrix λ is diagonal.
That is, without loss of generality we can take λi,j = ϵiδi,j and we end up with the Hartree-Fock
equation :

− h̵
2

2m
∇2ϕni(x) +

N

∑
j=1
∫ dx2(ϕ∗nj

(x2)V̂ ϕni(x)ϕnj(x2) − ϕ∗nj
(x)V̂ ϕni(x)ϕnj(x2)) = ϵiϕni(x).

(8.20)

Or, equivalently, we can write this more compactly as:

(T (x) + VH(x) − VE(x))ϕni(x) = ϵiϕni(x) (8.21)

where we have defined
T (x) ∶= − h̵

2

2m
∇2

VH(x) ∶=
N

∑
j=1
∫ dx2ϕ

∗
nj
(x2)V̂ ϕnj(x2)

VE(x) ∶=
N

∑
j=1
∫ dx2ϕ

∗
nj
(x)V̂ ϕnj(x2) .

(8.22)

Thus we see that we have decoupled the original eigenvalue problem defined on the N particle
system into a set of N eigenvalue problems for each of the single particle states. This looks
easier! The first term is the kinetic term, the second term is a potential energy term (which we
will look at more closely in a second) and the third term is the ‘exchange term’ arising from the
anti-symmetrization properties of the fermionic wave-function.

Ok, let us look more carefully at the VH(x) term (which corresponds to the direct integral term
in the potential 8.17). Let’s suppose that the potential has the form:

V̂ (x1, x2) =
e2

∣x1 − x2∣
(8.23)

We can then rewrite the Hartree term as:

V̂H(x) =
N

∑
j=1
∫ dx2e

2 ∣ϕnj(x2)∣
2

∣x − x2∣

= e2∫ dx2
∑Nj=1 ∣ϕnj(x)∣

2

∣x − x2∣

= e2∫ dx2
ρ(x2)
∣x − x2∣

, .

That is, the second term in the Hartree Fock equation can be interpreted as an effective potential
generated by the average potential generated by surrounding particles. That is, the Hartree
potential energy is a functional of the density ρ(x), as ρ is a function of a single variable. Note,
however, that the potential term depends on the wave-functions of all the other electrons.

If the exchange term VE is negligible, then the initial N -body problem reduces to a one-body
problem leading to the simplified Hartree equation:

− h̵
2

2m
∇2ϕni(x) + V̂H(x)ϕni(x) = ϵiϕni(x). (8.24)
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The Hartree energy is then given by:

E =
N

∑
i=1
⟨ϕni ∣t̂∣ϕni⟩ + ∫ dx1∫ dx2e

2 ρ(x1)ρ(x2)
∣x1 − x2∣

. (8.25)

While the Hartree equation has simplified the problem in the sense that we now have a set
of equations for each of the one-body wavefunctions, solving these exactly is challenging as the
potential term depends on the wavefunctions of all the particles via the density term ρ(x). So to
go further the general strategy is to pick a clever guess functional form for the density and then
apply the variational principle. This is the core idea of what is known as density functional theory
- a very powerful and widely used tool for approximating the energetic structure of many-body
systems. At its core is the following Theorem:

Theorem 8.3.2 (First Hohenberg-Kohn Theorem). The energy E of the ground state of an
N -particle system defined by Ĥ is an unknown functional of the density ρ(x).

If you are interested in knowing more on this I recommend Giuseppe Carleo’s master’s course
on methods for simulating quantum systems.
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